Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Daniel E. Lynch^a* and Ian McClenaghan^b

^aSchool of Science and the Environment, Coventry University, Coventry CV1 5FB, England, and ^bKey Organics Ltd, Highfield Industrial Estate, Camelford, Cornwall PL32 9QZ, England

Correspondence e-mail: apx106@coventry.ac.uk

Key indicators

Single-crystal X-ray study T = 150 KMean σ (C–C) = 0.005 Å R factor = 0.082 wR factor = 0.238 Data-to-parameter ratio = 16.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

5-(4-Fluorophenyl)-1-phenylpyrazole

The asymmetric unit of the title compound, $C_{15}H_{11}F_1N_2$, comprises two molecules with dihedral angles of 50.6 (1)/ 49.2 (1) and 51.5 (1)/53.3 (1)° between the pyrazole and, respectively, the phenyl and 4-fluorophenyl rings. One intermolecular $C-H\cdots F$ close contact is noted for each unique molecule. Received 1 May 2002 Accepted 5 June 2002 Online 8 June 2002

Comment

The title compound, (I), was prepared by the addition of phenylhydrazine to 1-(N,N-dimethylamino)-2-(4-fluoroben-zoyl)ethene. However, in this reaction there are two possible products (Fig. 2). One is formed *via* the hydrazone intermediate which subsequently cyclizes to the 1,3-substituted pyrazole; the other is formed *via* the Michael intermediate, which cyclizes to the 1,5-substituted product, *i.e.* the title compound. The asymmetric unit of this compound comprises two molecules with dihedral angles of 50.6 (1)/49.2 (1) and 51.5 (1)/53.3 (1)° between the pyrazole and, respectively, the phenyl and 4-fluorophenyl rings. One intermolecular C– $H \cdots F$ close contact is noted for each unique molecule.

Experimental

The title compound was obtained from Key Organics Ltd and crystals were grown from an ethanol solution.

The molecular configuration and atom-numbering scheme for the title

Figure 1

 \odot 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Acta Cryst. (2002). E58, o731-o732

compound, showing 50% probability ellipsoids.

Figure 2

Reaction scheme showing two possible intermediates and subsequent products for the reaction of phenylhydrazine with 1-(N,N-dimethylamino)-2-(4fluorobenzoyl)ethene.

Crystal data

$C_{15}H_{11}FN_2$	Z = 4		
$M_r = 238.26$	$D_x = 1.329 \text{ Mg m}$		
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation		
a = 7.847 (2) Å	Cell parameters		
b = 7.904 (2) Å	reflections		
c = 19.551 (4) Å	$\theta = 2.9-27.5^{\circ}$		
$\alpha = 90.20 \ (3)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$		
$\beta = 100.92 \ (3)^{\circ}$	T = 150 (2) K		
$\gamma = 90.61 \ (3)^{\circ}$	Block, yellow		
$V = 1190.5 (4) \text{ Å}^3$	$0.20 \times 0.18 \times 0.11$		

Data collection

Bruker-Nonius KappaCCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{\rm min}=0.982,\ T_{\rm max}=0.991$ 17989 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.082$ $wR(F^2) = 0.238$ S = 1.175311 reflections 326 parameters H-atom parameters constrained

-3 from 16018 0.10 mm

5311 independent reflections

 $w = 1/[\sigma^2(F_o^2) + (0.0756P)^2]$

-3

Extinction correction: SHELXL97

Extinction coefficient: 0.077 (9)

+ 2.8942*P*] where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min} = -0.33 \text{ e} \text{ Å}^{-3}$

 $R_{\rm int}=0.065$

 $\theta_{\rm max} = 27.5^{\circ}$

 $h = -10 \rightarrow 10$ $k = -10 \rightarrow 10$

 $l = -23 \rightarrow 25$

3979 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bonding geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C3A - H3A \cdots F15A^{i}$	0.95	2.48	3.415 (4)	169
$C4B - H4B \cdot \cdot \cdot F15B^{ii}$	0.95	2.44	3.385 (4)	171

Symmetry codes: (i) -x, -y, 1-z; (ii) -x, 2-y, -z.

All H atoms were included in the refinement, at calculated positions, as riding models, with C-H distances set to 0.95 Å. The $R_{\rm int}$ value of 0.065 was the result of weak high-angle data.

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON97 (Spek, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the EPSRC National Crystallography Service (Southampton).

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-37.

Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (1997). PLATON97. Version of May 1997. University of Utrecht, The Netherlands.